圣彼得堡概率学派对大数定理的研究奠定了概率论的理论基础。切比雪夫(Pierre-Simon marquisde Laplace,1749-1827)的研究动机就是试图应用不等式来精密估计确定试验下极限定理所产生的偏差,于1845年首先严格证明了伯努利大数定理,并于1866年给出一般情形下的切比雪夫大数定理。马尔可夫不满足于切比雪夫所要求随机变量方差值一致有界之条件,进一步改进了切比雪夫的结果,于1907年得到马尔可夫大数定理。圣彼得堡概率学派对大数定理理论的相关研究为概率论发展带来了生机,拓展了概率论的研究领域和发展空间,提升了俄罗斯乃至世界的概率论研究水平。
本文下载地址:
圣彼得堡概率学派和大数定理理论的奠基