
J D
 N

哥德尔不完全性定理摧毁了希尔伯特纲领吗？
Whether Gödel’s Incompleteness Theorems Defeats Hilbert’s Program?
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摘　要：希尔伯特纲领是20世纪20年代希尔伯特为了应对以集合论悖论为代表的数学危机和构造主

义的挑战而提出的为古典数学奠基的新方案。它不仅是希尔伯特哲学思想的具体数学体现，也是数学基

础中形式主义的重要代表。学界通常认为希尔伯特纲领由于哥德尔不完全性定理的出现而遭受彻底失败，

然而也有一些反对意见存在。通过区分对希尔伯特纲领三种不同的可能哲学阐释，可以系统而全面的探

讨哥德尔不完全性定理是否对希尔伯特特定认识论意义下的希尔伯特纲领构成致命打击。通过聚焦于“一

致性的不可证性”这一核心问题，我们给出肯定的看法，并说明这一论断的哲学含义。
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Abstract: Hilbert’s Program was a foundational proposal advanced by David Hilbert in the 1920s to address 
the mathematical crisis triggered by set-theoretic paradoxes and the challenges raised by constructivism, aiming 
to provide a new foundation for classical mathematics. The program not only embodies Hilbert’s philosophical 
ideas in terms of mathematical program, but also stands as a major representative of formalism in the foundation 
of mathematics. While it is widely accepted in the academia that Hilbert’s Program was fundamentally 
defeated by Gödel’s incompleteness theorems, disagreements remain. By distinguishing three possible 
philosophical interpretations of the program, this paper systematically and comprehensively examines whether 
Gödel’s incompleteness theorems deliver a fatal blow to Hilbert’s Program under his specific epistemological 
interpretations. Moreover, by focusing on the key issue of the unprovability of consistency, we affirm this 
conclusion and elucidate its philosophical implications.
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引      言

20 世纪 20 年代初，德国数学家希尔伯特

（David Hilbert）为应对集合论悖论和构造主义

及直觉主义的挑战提出了一个为古典数学奠基

的新方案，后被称为“希尔伯特纲领”（Hilbert’s 
Program, HP）。该纲领要求将全部古典数学以

公理化方式进行形式化，并证明此数学公理化

形式系统的一致性。其核心要点在于：这种一

致性证明本身必须仅采用希尔伯特所称的“有

穷主义”方法来完成。基于有穷主义推理特有

的认识论显明形和直觉可靠性特征，一致性证

明将为古典数学提供一劳永逸的正当性依据。

HP 不仅是希尔伯特自身哲学思想的具体数学体

现，也是早期数学基础研究中形式主义最重要
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的代表。然而，正是受 HP 的启发，哥德尔（Kurt 
Gödel）发现了算术形式系统的不完全性定理，

自此学界普遍认为不完全性定理表明 HP 无法

完全实现。然而，一方面，与普遍认为哥德尔

第二不完全性定理摧毁了 HP 的观点相反，哥

德尔在 1931 年论文中仅谨慎表示：“我要明确

强调，定理 XI[第二不完全性定理 ]并不否定

希尔伯特的形式主义立场。因为该立场仅预设

存在仅使用有穷主义证明手段的一致性证明，

而可能存在无法在形式系统中表达的有穷主义

证明”。（[1]，p.195）至迟在 1958 年，他明确

转变立场：“若要证明经典数学甚至经典数论

的一致性，必须超越希尔伯特意义下的有穷主

义数学框架”。（[2]，p.241）另一方面，由于

一致性概念的形式化表述复杂性以及若干一致

性断言的可证性，有学者认为第二不完全性定

理对 HP 的打击并非决定性的。[3] 在第二节中，

我们将首先概述HP，区分其三种不同哲学解释，

并在第三节中重点探讨哥德尔定理①是否对希

尔伯特特定认识论意义下的 HP 构成致命打击。

通过聚焦于“一致性不可证明性”这一核心问

题，我们论证尽管广义下的 HP 仍是数学哲学

领域极具影响力的理论立场，也已成为证明论

发展的核心动力，但要符合希尔伯特特定认识

论意义下的 HP 却注定是失败的。后文将详细

说明不同解读下失败的具体理由，并说明其哲

学含义。

一、 HP及其哲学内涵

1. HP 的核心要义

通常认为 HP 是希尔伯特为了应对有集合

论悖论所出现的第三次数学危机所提出的方

案，关于 HP 方案的原始形态及当代发展，有

大 量 文 献 论 述， 比 如 扎 克（Richard Zach）、
[4]，[5] 斯 莫 林 斯 基（Craig Smoryński）[6] 和 叶

峰（[7]，Chap.6） 等。 然 而， 希 尔 伯 特 对 数

学基础问题的关注早在集合论悖论出现之前就

已开始。非欧几何的发现、康托尔集合论的

兴起以及“分析的算术化”（arithmetization of 
analysis）等都是 19 世纪下半叶基础争论中的

焦点问题——这场争论以克罗内克（Leopold 
Kronecker）为一方，强调数学方法、对象及

性质必须具备构造性与可判定性；而以戴德金

（Richard Dedekind）和康托尔（Georg Cantor）
为代表的另一方认为数学的本质在于不受任何

关于方法或对象的先验哲学限制，只要这些方

法能导致丰富的数学成果，便不排斥抽象或非

构造性方法。希尔伯特无疑属于戴德金 - 康托

尔阵营，他意识到公理化方法对于这场关于数

学对象与方法本质争论的至关重要性。在其首

部基础著作《几何基础》中，[8] 希尔伯特特意

选择以欧几里得几何这一最古老且被认为绝对

可靠的数学领域作为试验场，展示了形式公理

化方法的威力，还详细探讨了后来成为其元数

学核心关注的问题——如一致性、完备性和独

立性。与公理化方法相伴的是对其一致性的证

明需求——即我们必须确保从公理系统出发，

通过有限步骤推演绝不会得出矛盾，否则该公

理系统既能推导一切，又无法定义任何内容。

然而，集合论悖论的出现，似乎预示着那些抽

象、非构造性推理潜藏着不确定性与危险。这

对康托尔“数学是自由创造”的构想构成了实

质威胁。贝奈斯（Paul Bernays）对此情境有

过生动描述：在集合论悖论发现的影响下，希

尔伯特曾短暂认为克罗内克的观点或许是正确

的。但他很快改变了立场。可以说，此时他的

目标转变为：通过革新数学观念，运用有穷性

这一克罗内克自己的理论武器来反击其限制性

主张。（[9]，p.173）

这一革新后的数学观念正是希尔伯特著名

的形式数学与非形式内容性元数学之区分。形

式数学即公理化数学，它可以通过罗素与怀特

海在《数学原理》中的逻辑形式体系这一新工

具来严格表述，希尔伯特本人在这一新工具的

创立过程中也起到过重要作用。[10] 除了形式化

①粗略而言，第一不完全性定理的非形式化表述是：对于任何包含特定算术的形式系统，都存在不可判定命题——即既不
能被证明，也不能被否证的陈述。第二不完备性定理表明：对于任何满足特定基本条件的形式系统而言，该系统的一致
性无法通过该系统自身可形式化的方法来证明。
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的公理化数学，我们还需另一种数学——即旨

在为形式化数学提供保障的元数学。正如希尔

伯特在首次阐述这一新理念时所言：

在这门真正的数学之外，还出现了一种

在某种程度上全新的数学——元数学，它通

过双重防护来捍卫数学：既使其免受不必要的

各种限制，又使其摆脱悖论的困扰。在此元

数学中——与纯粹数学中纯粹形式的推理模

式相反——我们运用内容性推理（contentual 
inference）；尤其适用于公理一致性的证明。

（[11]，p.1132）

需要特别指出的是，即便希尔伯特强调捍

卫或保护真正的数学，但他从未质疑该学科的

数学正确性，而仅是从认识论角度追问其严格

基础。因此他坚决反对外尔（Hermann Weyl）
所谓“数学危机”的隐喻，[12] 而只是认可外尔

关于构造性的观点：相较于非构造性方法，构

造性倾向具有更高程度的明证性与直觉确定

性。如果我们轻率地将仅适用于有限情形的直

觉方法无限推广至无限整体，便可能导致谬误。

这一教训的普遍意义不在于限制数学本身，而

在于夯实其基础与证成：“因此我们认识到：若

要为数学奠定严格基础，就无法将分析学中常

见的推理模式（如排中律）视为逻辑上无问题

的。相反，我们的任务正是要查明——为何以

及何种程度上——从分析与集合论中这类超穷

推理模式的应用总能获得正确结果。对超穷方

法的自由运用与完全驾驭必须在有穷主义的疆

域内实现！”（[13]，p.1140）

对希尔伯特而言，唯有基于直观可靠的方

法获得超穷形式数学系统的一致性证明，方能

实现这种保障。如此一来，数学基础的认识论

问题本身便转化为可严格处理的数学问题。希

尔伯特视此为自身方法相较其他哲学方案的巨

大优越性——关于数学认识论的问题，都可在

数学内部解决，而无需引入任何外部要素，诸

如克罗内克的“上帝”（赋予其整数概念），庞

加 莱（Henri Poincaré） 获 取 数 学 归 纳 法 真 理

的特殊能力，布劳威尔（Luitzen Egbertus Jan 
Brouwer）的原始直觉，或罗素与怀特海等逻

辑主义者所依赖的“还原公理”之类的内容性

假设。

希尔伯特与构造主义者之间的另一关键差

异，在于其有穷主义立场这一构成希尔伯特数

学哲学贡献核心的理念，既作为构造性方法的

替代方案，也可能成为其整个研究纲领的终极

归宿：

康德早已阐明……数学拥有独立于所有

逻辑的可靠内容，因而绝不能仅通过逻辑获

得基础。……作为逻辑推理运用与逻辑操作

执行的前提，某些超逻辑的具体对象必须预

先在我们的表象能力中被给予——这些对象

作为先于一切思维的直观直接经验而呈现。

若要确保逻辑推理的可靠性，就必须能完全

综观这些对象的所有部分，而它们的存在、

彼此差异、相继或关联的事实，将与对象本

身一同被直观直接给予——既不可被还原为

其他事物，也无需任何还原。（[14]，p.376）

2. HP 的三种哲学阐释

HP 的核心目标——为足够完备的形式数学

系统提供有穷主义一致性证明——在数学层面

相对明确，但有关其哲学含义却有着多种不同

解释路径。我们将依据文本呈现三种不同的重

要解读，并在后文中结合哥德尔不完全性定理

探讨其理论后果。

（1）一致性作为数学存在与真理的条件。

自早期几何学研究开始，一致性问题在希尔伯

特的公理化方法构想中始终占据特殊地位。他

与戴德金和康托尔共享这样的观点：数学活动

应摆脱任何哲学束缚。可以说，一致性本身

即是数学存在的理由（raison d’être）。在他于

1899 年与弗雷格（Gottlob Frege）关于几何学

基础的通信中，希尔伯特已明确将一致性视为

数学存在与真理的标准。（[15]，p.42）而在

其著名的巴黎演讲《数学问题》中讨论算术公

理一致性证明的意义时，希尔伯特更加强调：

“若能证明：通过有限步骤的逻辑推演，赋予概

念的属性绝不会导致矛盾，则我断言该概念的

数学存在性即由此得证。就此处讨论的算术实

数公理而言，公理一致性的证明同时也就是完

备实数系统（或连续统）数学存在性的证明”。

（[16]，p.1105）如此，在希尔伯特特有的转

哥德尔不完全性定理摧毁了希尔伯特纲领吗？
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化下，数学对象的存在性这一哲学问题被转变

为可精确求解的数学问题——真理问题同样如

此。在《数学的新基础》中对 HP 的首次完整

阐述中，他仍坚持一致性对数学真理的根本意

义：“由此可见，唯有通过解决分析算术公理一

致性问题，才能使这些基础研究获得令人满意

的定论。若能完成此项证明，我们便可断言数

学命题实乃无可辩驳的终极真理——这种认知

（鉴于其普遍哲学意义）对我们具有至高重要

性”。（[11]，p.1121）仅关乎符号、公式及机

械可推导性的句法的一致性概念如何能导出具

有实质内涵的存在与真理概念？我们将在下节

结合哥德尔定理，探讨该论题的可信度，并回

答在此 HP 阐释框架下，希尔伯特是否可被认

定为形式主义者这一相关问题。

（2）作为保守性纲领的 HP。与将一致性证

明的意义泛化为数学存在与真理的阐释不同，

作为保守性纲领的 HP 更关注数学中有穷 - 实

在 - 内容性与超穷 - 理想 - 形式性要素的区分，

并通过表明理想部分可被消除（或换言之，可

还原为实在部分）来回避关于理想领域中真理

与存在问题的讨论。若数学的理想部分相对于

实在部分具有保守性——即任何借助理想元素

证明的实在陈述，均可通过纯粹有穷主义方法

得证——则理想部分的使用仅出于实用考量：

简化证明过程、统一不同证明等。但若理想部

分不具备保守性，则可证明某个有穷主义手段

无法证实的实在陈述 P。假定所有有穷主义真

理皆可证明，那么 P 必然是一个可被证伪的实

在陈述，因而，与可被证明的非 P 这个否定式

一起将导致整个理论不一致。因此，一致性保

证了形式化数学系统中理想部分对实在部分的

保守性。尽管希尔伯特从未明确将理想对实在

陈述（尤其一般有穷陈述）的保守性列为其基

础纲领的目标，但其对 HP 的若干阐述暗示了

这种解读可能，例如：

在我的证明论中，我们将超限公理与公

式附加于有穷公理之上，正如在复数理论中

引入虚数元素，或在几何中引入理想对象。

如此操作的动机与成效，在我的证明论中是

同样的：超限公理的添加在某种意义上实现了

理论的简化与完备化。（[13]，p.1144）

（3）作为可靠性纲领的 HP。对 HP 方案最

合理的解读或许是将其视为某种可靠性规划，

有穷主义推理相较于超限方法的优势在于：后

者丧失直觉明证性，而确定性与可靠性仅存于

前者。因此，将有穷领域的确定性与可靠性扩

展至超穷领域，即便只是通过数学自身担保的

某种方法间接实现，便成为自然选择。这正契

合希尔伯特在数学新基础研究中的目标：一劳

永逸地消除对数学推理可靠性的普遍质疑。相

较于保守性阐释，我们不再先验限制超穷推理

可能发挥的作用——即不再要求其结论必须严

格吻合有穷主义推理所能证明者，而仅要求通

过超穷推理所证命题具备可靠性与内容真理

性。这一目标将通过数学严格性实现。 
若将有穷主义数学中的全称命题①纳入考

量，则可靠性阐释等价于断言：所有可证的 Π1
句子皆为真，这又显然等同于它们的一致性②。

为便于后续讨论，我们可用更形式化的方式表

述 Π₁- 可靠性——即系统 T 的 Π₁- 反射原理：对

于任意 Π1 句子 φ，T 可证明 Prov([φ])→φ，其

中 Prov(x) 为形式可证性谓词，[φ]为 φ 在合理

编码下的哥德尔数。

二、哥德尔定理及其理论关联

本节将依次探讨：在哥德尔不完全性定理

的审视下，HP 的三种阐释是否仍能成立。

1. 一致性与数学真理及存在性

若将“存在”与“真理”解释为模型中的

存在与真值，那么“一致性是否保证存在与真

理”的问题便获得更精确的表述：每个（组）

一致命题都有模型。这又等价于断言形式系统

①这些被逻辑学家称为 Π1 句子的命题，是以（一个或系列）全称量词开头且主体部分无量词的陈述。某些全称公式必须归
属于有穷主义一般命题，因为断言形式系统 T 一致性的陈述正属此类。

②若某个可证的全称命题为假，则其反例（作为原子命题）必然可被证明。通过全称示例规则，该全称命题亦能推出其反
例的否定式，从而导致矛盾与不一致性。
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具有完备性——即所有有效式（在所有模型中

为真的命题）皆可被证明。一阶逻辑正是这样

的系统。然而，哥德尔第一不完全性定理已对

此普遍主张提出质疑。以二阶算术系统 T 为例：

假设 G 是不可判定命题，则 G 与其否定 ¬G 都

与 T 一致，且各自存在模型——这与“二阶算

术具有范畴性”（即所有模型同构）的著名事

实直接矛盾。

然而，若不从模型论角度理解存在与真理，

我们该如何诠释这种形式主义语境下的存在与

真理表述？首先需要明确的是：希尔伯特绝非

将数学视为无意义公式游戏的形式主义者，比

如，拉姆齐（Frank Ramsey）曾将希尔伯特的

形式主义思想描述成将数学视为“一种在纸上

按固定规则玩弄无意义符号的游戏，类似于井

字棋”。（[17]，p.188）相反，大量证据驳斥这

种简单化的形式主义阐释：他热情称数学为“我

们最珍贵的宝藏”（[11]，p.1119）将分析学比

作“一曲无穷的交响乐”，（[14]，p.373）更著

名的是将康托尔集合论誉为不容被驱逐的“天

堂”。同时也强调：

除了数学价值外，它还具有重大哲学意

义。因为这些公式按特定规则展开，体现了

我们思维的技艺。这些规则构成一个可被发

现并明确陈述的封闭系统。我的证明论的根

本理念，无非是描述理解活动的规则，为我

们实际思维过程建立记录。（[14]，p.475）

正如物理学家仅要求从自然法则或假设中

通过类似公式游戏的纯推理导出某些可观测命

题，希尔伯特的证明论同样只需保证从超穷部

分推导出的有穷命题能够直接被验证。此类比

的关键不在于宣称超穷命题如理论物理术语般

毫无意义，而在于强调：正如研究电子或场无

需直接观测，超穷命题也无需直接直觉意义。

斯坦因（Howard Stein）对此有过精辟总结：

[希尔伯特的]核心观点，我认为毋宁是：

数学逻各斯（mathematical logos）无需对任何

强加的意义标准负责——既非康德或布劳威

尔的“直觉”，亦非有穷或可判定性要求，更

非任何人的形而上学“本体论”标准；其唯一

的“形式”或“法理”责任就是保持一致性（当

然，它或许还负有所谓“道德”或“审美”责任：

要有用、有趣或优美；但这无法被强制——诗

歌不因审查而生。（[18]，p.255）

我们既可将超穷命题视作与有穷命题同等

富有意义，又可将其当作符号游戏中的无意

义公式。然而，无论按常规模型论方式，还

是如上述这种独立路径来理解意义，其底层假

设——一致性——似乎比意义选择本身带来更

严峻的难题。

2. 保守性与不可穷尽性

将 HP 阐释为追求超穷理论 T 相对于其有穷

部分 S 的保守性之方案，因哥德尔第一不完全

性定理也是不可行的。对任何形式化的 S，总

存在S中不可判定、却能在T辅助下判定的命题，

例如 T 自身的一致性便属此类命题。这种对立

情境被哥德尔称为“数学的不可穷尽性”的著

名例证。早在 1933 年，哥德尔便注意到这种奇

特状况：我们意图为数学构建一个单一且全面

的形式系统，却最终发现存在无限可扩展的系

统序列。然而，哥德尔并未将此视为类型论的

缺陷或污点，反而认为其“完美契合”（[19]，

p.48）第一不完全性定理的预期——即便对于

整数理论，也需不断引入新证明方法或公理：

这一事实从另一视角看也颇具深意：它

表明高阶类型的构建绝非徒劳，即便对于算

术命题这类相对简单的结构，其定理证明也

必须依赖类型层级的提升。哥德巴赫猜想即

是这样的例子。关于形式系统中不可判定命

题存在性的一般定理有一个特例：某些算术命

题只能通过解析方法予以证明；更有些命题甚

至需借助集合论中的无穷大基数等高阶工具。

（[19]，p.48）

3. 可证一致性陈述与反射原理

针对哥德尔第二不完全性定理使有穷主义

一致性证明成为不可能的观点，存在如下反驳：

即使假设形式系统足够完备以包含所有有穷主

义证明手段，某些非标准算术系统确实能通过

其独特构造方式证明自身的一致性陈述 Con，

这 一 现 象 最 早 由 费 弗 曼（Solomon Feferman）

指出并进行了系统研究。[20] 更甚者，对任何

哥德尔不完全性定理摧毁了希尔伯特纲领吗？



J D
 N

58

标准算术系统，若其本身一致，我们总能找到

一个能证明同样定理且能证明自身一致性的对

应系统。然而这些系统因各种缺陷均非真正的

形式数学系统，故无法为 HP 提供规避第二不

完 全 性 定 理 的 实 质 出 路。 吉 亚 昆 托（Marcus 
Giaquinto）（[21]，p.188） 讨 论 了 若 干 案 例，

并详细分析了费弗曼与罗瑟（John Rosser）系

统的缺陷——这些系统因证明关系不可判定与

切规则（Cut Rule）失效而未能成为真正的形

式数学系统。另一方面，类似于这些一致性导

向的形式系统，我们也能基于“一致性导向”

的证明谓词，在标准算术系统 T 内构造可证的

非标准一致性陈述。设 Prf(x, y) 为包含算术的

某形式系统的标准证明谓词——即这个算术化

谓词表示元数学概念“x 是以哥德尔数 y 为末项

公式的证明序列的哥德尔数”。经典一致性陈

述 Con 通常定义为∀x(¬Prf(x, [0=s0]))，其中

s 表示后继函数，[0=s0]是解释为“0 等于 1”（即

矛盾式）的公式哥德尔数。若 T 包含某类归纳

原理，则可证此标准 Con 在 T 内不可证。（[22]，

Chap.31）令 Prf(x, y) 仍表达 T 的推导关系，莫

斯托夫斯基（Andrzej Mostowski）通过此标准

谓词巧妙地定义出了一个新的一致性导向证明

谓词（[23]，p.24）如下：

MPrf(x, y) ≝ Prf(x, y)∧¬Prf(x, [0=s0])

这个新证明谓词 MPrf(x, y) 的直观含义是：

当且仅当 x 是以 y 为结论公式的证明序列的哥德

尔数且 x 不是矛盾式 0=1 的证明时，x 才是 y 的

M- 证明。假设系统 T 一致，则任何公式证明序

列都不可能以矛盾式结尾——即¬Prf(x, [0=s0])
对所有 x 为真，因而可被推导（作为无量词命

题）。从外延角度看，MPrf(x, y) 与标准证明谓词

Prf(x, y)对相同数值有序对的真值判定完全一致。

但二者的“内涵”差异在于：MPrf(x, y) 的断言

远比 Prf(x, y) 更强。现若基于此一致性导向的新

证明关系构造新一致性陈述 Con*≝∀x(¬MPrf(x, 
[0=s0]))，则该陈述可轻松从 T 导出——因其本

质上是谓词逻辑的矛盾律定理：

Con*↔∀x¬[(Prfx, 0=s0)∧¬Prf(x, [0=s0])].

上述考量使得某些评论者，如德特莱夫森

（Michael Detlefsen）[3] 对哥德尔第二不完全性

定理在 HP 上的效力产生质疑。然而，更深入

的考察将表明：无论某些一致性陈述及其类似

陈述的可证性在揭示第一和第二不完全性定理

差异方面多么重要，它们都无法完成既定的哲

学目标，原因有三：

首先，涉及一致性导向可证性谓词（如上

述或其他变体）的可证一致性陈述，其哲学价

值非常有限——因为这些陈述是否真正断言一

致性仍取决于理论 T 自身是否一致。若 T 确实

一致，则通过若干技巧构造的证明谓词 MPrf(x, 
y) 确实表达了真实的证明关系，并与 Prf(x, y)
外延重合，此时相关的 Con* 的确可解读为表

达 T 的一致性。但若 T 不一致，MPrf 便无法表

达正统的证明关系，Con* 也不能被理解为常规

的一致性陈述。以上述情形为例：假设 T 不一

致且 m 是 0=s0 证明的哥德尔数，则既有 Prf(m, 
[0=s0]) 又 有 ¬MPrf(m, [0=s0])—— 但 在 不 一

致系统中由于爆炸原则①的存在本应一切皆可

证。¬MPrf(m, [0=s0]) 仅表明：MPrf(x, y) 及其

Con* 并非我们真正寻求的目标。

其次，与第一点密切相关，这类一致性导

向的可证性谓词通常无法满足全部三条希尔伯

特 - 贝奈斯 - 勒布（HBL）可导性条件——这

些条件最初由希尔伯特与伯奈斯提出，[24] 他们

在该著作中首次完整证明了哥德尔第二不完备

性定理；后经勒布（Martin Löb）的改进，[25]

条件表述得到了大幅简化。这些条件不仅体现

了我们对证明谓词的直觉要求，更是确保与标

准证明谓词相关联的系统内一致性陈述不可证

的关键。对于任意形式数学系统 T，其形式定

理谓词“Prov(x)”（定义为 Prov(x)≝∃yPrf(y, x)）
需满足的三条条件如下：

1. 若 A 是 T 的定理，且 [A]表示 A 的哥德

①爆炸原则（Ex falso quodlibet）说是说从矛盾可推出一切，这是一条经典逻辑中的有效推理规则，虽然有不少非经典逻辑
拒斥此原则。
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尔数，则 Prov([A]) 也是 T 的定理。

2. 对 T 中 任 意 公 式 A，T 可 证 明“ 若

Prov([A])， 则 Prov([Prov([A])])” —— 即 条

件（1）本身可在 T 内形式化，表明 T“知道”

该条件。

3. 对 T 中 任 意 公 式 A 与 B， 可 证：“ 若

Prov([A]) 且 Prov([A→B])， 则 Prov([B])”。

这实质断言分离规则（modus ponens）规则在

T 内可形式化。

任何非标准证明谓词都将在某方面无法满

足这些条件，从而使得其关联的一致性陈述能

在同一系统内可证——这看似违背了哥德尔第

二不完全性定理。以著名的罗瑟谓词（Rosser 
predicate）为例，其定义如下：

RPrf(x, y)≝Prfx, y∧(∀z≤x)¬Prf(z, Neg(y))

其中，Neg(y) 表示哥德尔数为 y 的公式之

否定的哥德尔数。RPrf(x, y) 直觉含义是：当且

仅当 x 是以 y 为结论公式的证明序列的哥德尔

数且任意小于 x 的数都不是 y 的否定的证明，x
才是 y 的 R- 证明。类似的，当系统 T 一致时，

罗瑟可证性谓词 RPrf(x, y) 与标准可证性谓词

Prf(x, y) 具有相同的外延；但当 T 不一致时，某

些公式在罗瑟可证性意义上可能“不可证”，

明显和我们关于可证性谓词的直觉相违背。显

然，罗瑟可证性也无法满足上述三个条件。对

罗瑟证明谓词的主要兴趣在于，它似乎更贴近

数学家处理数学证明的实际方式——每当获得

某个定理的证明时，他们希望确保在某种预定

意义上“之前”从未出现过相反结论的证明。

然而，尽管罗瑟方法作为实际数学实践的模型

看似合理（即便暂不考虑对证明进行可行排序

的实际操作难题），它仍无法为 HP 提供解决方

案，因为它试图挽救的恰恰是 HP 本身的核心

诉求。HP 中证明的本质在于形式化的“理想”

推理，因此证明必须严格按形式意义理解：即

从公理出发，通过逐步应用推理规则最终得到

待证定理的公式序列，不容许任何外部元素的

介入。就罗瑟证明谓词而言，若 T 不一致，HP
中真实内容性部分中的某些错误定理可能仍具

有罗瑟可证性——反例可能出现在证明序列的

更晚位置，这将严重违背 HP 作为可靠性纲领

的根本要求。

最后且可能最重要的是，我们可以绕过寻

找“正确”的可证性谓词（进而“正确”的一

致性陈述）的问题，直接论证 HP 的不完全性。

哥德尔在 1972 年笔记《关于同一系统中一致性

不可证性的最优最普遍版本》（[26]，p.305）

中区分了两种一致性概念：内一致性：命题与

其否定命题均不可证（即标准的一致性陈述

Con）；外一致性：“可证方程在原始递归项上

的等式演算规则仅产生正确的数值方程”（对

应 Π1 反射原理）。对于常规系统（其一致性陈

述源自满足 HBL 条件的证明谓词），这两种一

致性是等价的。（[22]，Chap.36）但即便证明

谓词不满足 HBL 条件，只要系统 T 实际一致，

Π1 反射原理仍无法在 T 内导出——这与那些

非标准的、关注一致性的陈述形成鲜明对比。

其本质原因可视为哥德尔第一不完全性定理的

直接推论：取标准不可判定句 G，由于 G 满足

G↔¬Prov([G])，根据一致性条件，G 在 T 中不

可证。由于 G 本身是 Π1 语句，若 Π1 反射原

理在 T 中成立，则 Prov([G])→G 也应在 T 中可

证。这与 G↔¬Prov([G])) 结合将导致 G 在 T 中

可证，产生矛盾。因此，仅凭一致性加上若干

宽松条件（如对角化引理的可证性①），就足以

使 Π1 反射原理成为任何系统 T 都无法实现的

目标——而这恰恰是 HP 中为系统 S 的超限公理

提供正当性证明所需的核心要素。

结      论

简而言之，无论我们对希尔伯特原始纲领

作出何种合理的哲学阐释，哥德尔不完全性定

理都注定其无法实现。然而，这并不是否定该

纲领为数学基础研究带来的哲学价值，也不妨

①这正是对角化引理的核心内容：对于语言中可表达的任意开放公式 Φ(x，总存在一个语句 P，使得 P↔Φ([P]) 可在形式系
统中得证。

哥德尔不完全性定理摧毁了希尔伯特纲领吗？
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碍后人对其可能进行的扩展或修正。更全面而

综合的评价可见于哥德尔自身的论述：

已经证明的仅仅是：希尔伯特所设想的特

定认识论目标无法实现。该目标旨在基于如

同初等算术般具体且直接明证的依据，来证

明经典数学公理的一致性。然而，若从纯数

学视角审视这一局面，基于适当选择的更强

元数学前提的一致性证明同样具有重要价值，

这些证明能引向对数学证明理论结构的深刻

洞见。（[9]，p.277）

事实上，广义化的 HP 在后续证明论发展

中确实催生了重要的数学成果，并极大地深化

了我们对数学证明结构的理解。尽管这些描述

性成果的哲学意义或许较为有限，且未能如希

尔伯特预期的那般直接明晰，但它们仍可能为

未来的哲学思考提供素材。正如费弗曼恰当地

指出：

总体而言，本研究所呈现的这类成果[还

原性证明论成果]，其价值在于能更精准地评

判各种数学哲学立场——如有穷主义、可定

义主义、构造主义及集合论实在论——的支

持或反对依据。无论人们是否出于本体论和

/ 或认识论原因认真对待其中某种哲学立场，

重要的是要明确：数学的哪些部分最终能在

相应哲学基础上获得辩护，而哪些部分不能。

（[27]，p.207）

换言之，一方面，人们无需成为彻底的柏

拉图主义者亦可接受经典数学的主体内容——

只要这些内容能被归约为更具构造性的部分；

另一方面，非柏拉图主义者也能更清晰地认识

到其原则所无法获取的内容，并准备好作出相

应的理论牺牲。只要认识论立场能够被精确表

述，便可通过数学严谨性的论证予以否定性反

驳或肯定性辩护，这一理念不仅与哥德尔对哲

学立场精确性和严密性的追求完全吻合，也是

数学哲学的特定视角能带给一般哲学研究的重

要启示。
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